The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells
نویسندگان
چکیده
The adrenergic differentiation of sympathetic neurons is controlled by complex interactions with the embryonic environment. To provide a basis for the experimental analysis of these interactions, the expression of the adrenergic marker enzyme tyrosine hydroxylase (TH) was analyzed by immunohistochemistry and in situ hybridization in sympathetic ganglia and the adrenal medulla of chick embryos. In parallel, the developmental expression of the transcription factors cPhox-2 and Cash-1 was analyzed by in situ hybridization. TH protein was first detectable during the third day of development (stage 19) in cells of the primary sympathetic strands. A few hours earlier (stage 18), TH mRNA could be found by in situ hybridization. At the very same time and location, mRNA for the transcription factor cPhox-2 was first observed. In contrast, mRNA for the transcription factor Cash-1 was detected much earlier, at stage 15, dorsal to the aorta where the primary sympathetic ganglia form. High TH mRNA levels are maintained during later embryonic development (stage 35) in both sympathetic ganglia and adrenal chromaffin cells. In contrast, cPhox-2 and Cash-1 mRNA are selectively reduced in chromaffin cells and sympathetic ganglia, respectively. The results show that TH and cPhox-2 are early markers expressed in sympathetic ganglia. Their coordinated expression points towards an inductive event possibly occurring close to the aorta and leading to the expression of an adrenergic phenotype. Cash-1 is detected significantly earlier, suggesting that its expression is induced by a separate event.
منابع مشابه
Positional Relationship between Natural Killer Cells and Distribution of Sympathetic Nerves in Decidualized Mouse Uterus
Background: Uterine natural killer (uNK) cells are the most abundant leukocytes in pre-implantation endometrium and early pregnancy deciduas in humans and rodents. They are associated with structural changes in maternal spiral arteries but regulation of their re-cruitment and activation is incompletely understood. The major subpopulation of uNK cells in humans expresses CD56, the neural cell ad...
متن کاملThe expression of dopamine β-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development
During differentiation of sympathetic neurons in chick embryos, tyrosine hydroxylase (TH) and dopamine b-hydroxylase (DBH) mRNAs become detectable during the same developmental period and are both induced by BMP 4. Later during sympathetic ganglion development, DBH is detectable in TH-positive and -negative cells. Moreover, BMPs reduce DBH mRNA in cultures of sympathetic neurons while leaving T...
متن کاملDifferential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons.
We have examined the regulation of transcription factor gene expression and phenotypic markers in developing chick sympathetic neurons. Sympathetic progenitor cells first express the bHLH transcriptional regulator Cash-1 (a chicken achaete-scute homologue), followed by coordinate expression of Phox2, a paired homeodomain protein, and GATA-2, a zinc finger protein. SCG10, a pan-neuronal membrane...
متن کاملIn Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells
Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...
متن کاملExpression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 52 شماره
صفحات -
تاریخ انتشار 1995